Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas.
نویسندگان
چکیده
In response to the urgent need for estimates of the oil and gas flow rate from the Macondo well MC252-1 blowout, we assembled a small team and carried out oil and gas flow simulations using the TOUGH2 codes over two weeks in mid-2010. The conceptual model included the oil reservoir and the well with a top boundary condition located at the bottom of the blowout preventer. We developed a fluid properties module (Eoil) applicable to a simple two-phase and two-component oil-gas system. The flow of oil and gas was simulated using T2Well, a coupled reservoir-wellbore flow model, along with iTOUGH2 for sensitivity analysis and uncertainty quantification. The most likely oil flow rate estimated from simulations based on the data available in early June 2010 was about 100,000 bbl/d (barrels per day) with a corresponding gas flow rate of 300 MMscf/d (million standard cubic feet per day) assuming the well was open to the reservoir over 30 m of thickness. A Monte Carlo analysis of reservoir and fluid properties provided an uncertainty distribution with a long tail extending down to 60,000 bbl/d of oil (170 MMscf/d of gas). The flow rate was most strongly sensitive to reservoir permeability. Conceptual model uncertainty was also significant, particularly with regard to the length of the well that was open to the reservoir. For fluid-entry interval length of 1.5 m, the oil flow rate was about 56,000 bbl/d. Sensitivity analyses showed that flow rate was not very sensitive to pressure-drop across the blowout preventer due to the interplay between gas exsolution and oil flow rate.
منابع مشابه
A Numerical Investigation into the Effect of Controllable Parameters on the Natural Gas Storage in a Weak Reservoir-type Aquifer
Natural gas storage process in aquifer, due to fluid flow behavior of gas and water in the porous medium and because of their contact with each other under reservoir conditions, faces several challenges. Therefore, there should be a clear understanding of the injected gas behavior before and after the injection into the reservoir. This research simulates the natural gas storage in aquifer by us...
متن کاملThree-Phase Modeling of Dynamic Kill in Gas-Condensate Well Using Advection Upstream Splitting Method Hybrid Scheme
Understanding and modeling of three-phase transient flow in gas-condensate wells play a vital role in designing and optimizing dynamic kill procedure of each well that needs to capture the discontinuities in density, geometry, and velocity of phases but also the effect of temperature on such parameters. In this study, two-phase Advection-Upstream-Splitting-Method (AUSMV) hybrid scheme is extend...
متن کاملA new investigation on modeling of permeability reduction during CO2 flooding processes in sandstone oil reservoirs
Permeability reduction in oil reservoirs during primary oil recovery and using the enhanced oil recovery methods are complicated problem which most of the oil field in worlds has encountered. In this work, a modified model based on four phase black oil model (oil, water, gas, and asphaltene) was developed to account permeability reduction during CO2 flooding in cylindrical coordinates around a ...
متن کاملA New Methodology to Define Net Pay Zone in Gas Reservoirs
Net pay thickness is defined as that portion of a reservoir which contains economically producible hydrocarbons with today’s technology, prices, and costs. This thickness is a key parameter of the volumetric calculation of in-place hydrocarbons, well test interpretation, and reservoir characterization. A reservoir interval is considered as net pay when it contains hydrocarbons that can flow at ...
متن کاملThe Gulf of Mexico ecosystem, six years after the Macondo oil well blowout
The Gulf of Mexico ecosystem is a hotspot for biological diversity and supports a number of industries, from tourism to fishery production to oil and gas exploration, that serve as the economic backbone of Gulf coast states. The Gulf is a natural hydrocarbon basin, rich with stores of oil and gas that lie in reservoirs deep beneath the seafloor. The natural seepage of hydrocarbons across the Gu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 50 شماره
صفحات -
تاریخ انتشار 2012